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Abstract. The classical solution is obtained for the system of two coupled harmonic oscillators
with exponentially decaying mass. Using the Feynman path-integral method of quantization an
exact propagator for the corresponding quantum system is derived.

1. Introduction

The interest in exactly solvable problems in quantum physics has increased sharply in the last
few years. This is concerned, of course, with the fact that the description of the behaviour of
nonconservative physical systems is usually very complicated, but sometimes such systems
can be modelled by means of quite a simple Hamiltonian, which leads to standard problems
of quantum mechanics. Although Feynman’s elegant path-integral formulation [1] offers a
general approach for treating quantum-mechanical systems, unfortunately only a few problems
can be solved exactly. Exactly integrable systems have always been at the centre of attention
in physics and mathematics. The systems of oscillator type have been investigated extensively
for more than 60 years. Some of the most interesting early results in the study of time-
dependent oscillators are reviewed in the monograph [2]. More recently, very interesting
systems have been investigated, such as the driven harmonic oscillator with a quadratic
Hamiltonian [3], the time-dependent damped driven harmonic oscillator [4], the harmonic
oscillator with exponentially decaying mass [5] and with a strongly pulsating mass [6]. But
there are many situations [7] (especially in quantum and classical collective processes), where
it is very important to know the exact solutions for a system of coupled oscillators. One such
problem was solved exactly by Kyu-Hwang Yeonet al [8] for two driven coupled harmonic
oscillators with constant frequencies and masses. But unfortunately, such a simple system can
provide only too rough a model for the processes with changing effective masses. In this case
we need a quite simple but adequate model, such as exponentially changing masses. In the
present work we firstly find the solution of the classical equations of motion by transforming
the time scale for a system of two coupled oscillators with exponentially decaying masses
(section 2) and secondly, carry out the quantization of such a system within the framework of
the Feynman approach. The exact propagator is obtained in sections 3 and 4.
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2. Classical solution

In this section we consider classically a system of two harmonic oscillators with exponentially
decaying masses which are coupled together by means of another spring. We assume that
the masses of these oscillators and the three spring constants are all the same and take, for
convenience,m = 1. The Hamiltonian for such a system takes the form

H = 1
2(p

2
1 + p2

2) eγ t + ω2(q2
1 + q2

2 − q1q2). (2.1)

The ordinary Hamilton equations give

q̇1 = p1eγ t q̇2 = p2eγ t (2.2)

ṗ1 = ω2(q2 − 2q1) ṗ2 = ω2(q1− 2q2). (2.3)

Going to the new variables(q, q̇) in the usual way, we obtain from equation (2.1) the Lagrangian
of our system

L = p1q̇1 + p2q̇2 −H = 1
2(q̇

2
1 + q̇2

2) e−γ t − ω2(q2
1 + q2

2 − q1q2) (2.4)

and the corresponding equations of motion

q̈1− γ q̇1 + ω2(2q1− q2) eγ t = 0 (2.5)

q̈2 − γ q̇2 + ω2(2q2 − q1) eγ t = 0. (2.6)

To solve these classical equations of motion, we transform the time scale intoη = expγ t .
Then the system of equations (2.5) and (2.6) becomes

d2q1

dη2
+
ω2

ηγ 2
[2q1(η)− q2(η)] = 0 (2.7)

d2q2

dη2
+
ω2

ηγ 2
[2q2(η)− q1(η)] = 0. (2.8)

To transform these equations into an integrable form we further introduce the normal
coordinates,

Q1 = 1√
2
(q1 + q2) Q2 = 1√

2
(q2 − q1). (2.9)

Then the system (2.7) and (2.8) is reduced to the following:

d2Qj

dη2
+
�2
j

ηγ 2
Qj = 0 (j = 1, 2) (2.10)

where�1 =
√

3ω,�2 = ω.
Using straightforward substitutions, equations (2.10) can be transformed into system of

ordinary Bessel equations. It is easy to show that their solutions are

Qj = η1/2

{
Y1j J1

(
2�j
γ
η1/2

)
+ Y2jN1

(
2�j
γ
η1/2

)}
(2.11)

whereYkj are constants,J1(x) andN1(x) are Bessel and Neumann functions of the first type,
respectively.
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Returning to the old coordinates, we obtain the general classical solution of our problem
in the following simple form:

q1(t) = eγ t/2
{
C1J1(ξ) +C2N1(ξ) +C3J1(

√
3ξ) +C4N1(

√
3ξ)

}
(2.12)

q2(t) = eγ t/2
{
C1J1(ξ) +C2N1(ξ)− C3J1(

√
3ξ)− C4N1(

√
3ξ)

}
(2.13)

whereCi are constants and

ξ = 2ω

γ
eγ t/2. (2.14)

Further, we will quantize our system using the explicit form of the general classical solution
(2.12) and (2.13).

3. Path-integral approach

In this section we will try to derive a propagator for our system of interest following Feynman’s
interpretation of quantum mechanics [1]. In the path-integral formulation, the solution of the
Schr̈odinger equation is given as the path-dependent integral equation with propagatorP,

ψ(q1, q2, t) =
∫

dq ′1 dq ′2P(q1, q2; t |q ′1, q ′2; t ′) ψ(q ′1, q ′2, t ′). (3.1)

PropagatorP is the probability to register our system at the momentt in the state with
coordinatesq1, q2 if at time t ′ one was in the state with coordinatesq ′1, q ′2. In the case of
a bound system, the propagator is expressed in terms of wavefunctions as

P(q1, q2; t |q ′1, q ′2; t ′) =
∞∑
n=0

ψn(q1, q2, t) ψ
∗
n (q
′
1, q
′
2, t
′). (3.2)

In Feynman’s approach we have

P(q1, q2; t |q ′1, q ′2; t ′) =
∫ (q1,q2,t)

(q ′1,q
′
2,t
′)
Dq(t) exp

{
i

h̄
S(q1, q2, q

′
1, q
′
2; t, t ′)

}
(3.3)

where the measure is given by

Dq(t) = exp{− 1
2γ (t − t ′)} lim

N→∞
1

A

N−1∏
j=1

dq1j dq2j

A2
(3.4)

and S(q1, q2, q
′
1, q
′
2; t, t ′) is the action defined as the time integral over the Lagrangian

L(q1, q2, τ ) between the time pointst ′ andt , i.e.

S(q1, q2, q
′
1, q
′
2; t, t ′) =

∫ t

t ′
dτ L(q1, q2, τ ). (3.5)

Equation (3.4) contains the normalization factorA given by

A = (2π ih̄ε)1/2 ε = lim
n→0

t

N
. (3.6)

In equation (3.4) we have accounted for the time dependence of mass (see [9]) and the identity
N−1∏
j=1

e−γ ε = e−γ (t−t
′).

After substitution of equation (2.4) into equation (3.5), the action becomes

S(q1, q2, q
′
1, q
′
2; t, t ′) = S(cl)(q1, q2, q

′
1, q
′
2; t, t ′)

+
∫ t

t ′
dτ
{

1
2

[
ẏ2

1(τ ) + ẏ2
2(τ )

]
e−γ t − ω2

[
y2

1(τ ) + y2
2(τ )− y1(τ )y2(τ )

]}
. (3.7)
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HereS(cl) is the classical action andyi are quantum fluctuations of trajectoriesqi(t):

yi = qi − q(cl)i (i = 1, 2) (3.8)

whereq(cl)i is a classical path.
Using equation (3.7) the propagator (3.3) can be expressed in the following convenient

form:

P(q1, q2; t |q ′1, q ′2; t ′) = F(t, t ′) e(i/h̄)S
(cl)

(3.9)

whereF(t, t ′) is the multiplicative function that can be presented as

F(t, t ′) =
∫ (0)

(0)
Dy(t) exp

{
i

2h̄

∫ t

t ′
dt
[
(ẏ2

1 + ẏ2
2) e−γ t − 2ω2(y2

1 + y2
2 − y1y2)

]}
. (3.10)

Thus, we obtained the result that, as usual, the propagator depends only on the classical action
(the multiplicative function does not depend on trajectories). Now we are going to obtain the
multiplicative function (3.10) explicitly. For this purpose equation (3.10) should be rewritten
in terms of normal coordinates (2.9). Of course, the condition(y1, y2) = (0, 0) is reduced
automatically to(z1, z2) = (0, 0), where

zi = Qi −Q(cl)
i (i = 1, 2). (3.11)

After such a substitution we come to the equation

F(t, t ′) = J
∫ (0)

(0)
Dz(t) exp

{
i

2h̄

∫ t

t ′
dτ
[
(ż2

1e−γ t − ω2z2
1) + (ż2

2e−γ t − 3ω2z2
2)
]}
. (3.12)

The path transformation has an obvious form(
yk1

yk2

)
=
(

1/
√

2 −1/
√

2

1/
√

2 1/
√

2

)(
zk1

zk2

)
(3.13)

wherek = 1, 2, . . . , N . Therefore, JacobianJ in equation (3.12) becomes unity.
Since we have separated the action into functionals with only the same variables in the

path integral, then this integral can be represented by the multiplication of path integrals with
each variable. So, we have

F(t, t ′) = F1(t, t
′) F2(t, t

′) =
{∫ (0)

(0)
Dz1(t) exp

[
i

2h̄

∫ t

t ′
dτ (ż2

1e−γ t − ω2z2
1)

]}
×
{∫ (0)

(0)
Dz2(t) exp

[
i

2h̄

∫ t

t ′
dτ (ż2

2e−γ t − 3ω2z2
2)

]}
. (3.14)

Since the integrals in equation (3.14) have a Gaussian form, they can be evaluated using the
well developed general methods [10], but here we exploit the simplest one. In view of the form
of equation (3.14) (i.e. the product of multiplicative functions for two independent oscillators),
one can use the formula (see, e.g., [11])

F(t, t ′) = 1

2π ih̄

(
∂2S(cl)

∂Q1 ∂Q
′
1

∂2S(cl)

∂Q2 ∂Q
′
2

)1/2

(3.15)

whereQj are defined by equations (2.9) andS(cl) is the classical action, which will be evaluated
in the next section.
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4. Classical action and propagator

The classical action for two coupling harmonic oscillators with exponentially decaying mass
according to equations (2.4) and (3.5) takes the following form:

S(cl) =
∫ t

t ′

[
1
2

(
q̇
(cl)2
1 + q̇(cl)22

)
e−γ τ − ω2

(
q
(cl)2
1 + q(cl)22 − q(cl)1 q

(cl)
2

)]
(4.1)

whereq(cl)i andq̇(cl)i are the classical path and velocity, respectively (in the following we will
drop the superscript(cl)). Integrating equation (4.1) over time, we obtain

S(cl) = 1
2(q1q̇1 + q2q̇2) e−γ τ |tt ′ −

∫ t

t ′
dτ e−γ τ

q1

2

[
q̈1− γ q̇1 + ω2(2q1− q2) eγ τ

]
−
∫ t

t ′
dτ e−γ τ

q2

2

[
q̈2 − γ q̇2 + ω2(2q2 − q1) eγ τ

]
= 1

2

{[
q1(t) q̇1(t) + q2(t) q̇2(t)

]
e−γ t − [q1(t

′) q̇1(t
′) + q2(t

′) q̇2(t
′)
]

e−γ t
′}
. (4.2)

Here we have taken into account the classical equations of motion (2.5) and (2.6).
To obtain an exact expression for equation (4.2) we note that classical trajectoriesqi are

given by the exact solutions (2.12) and (2.13). Using the ordinary differential relations for
Bessel and Neumann functions [10], we obtain

q̇1 = ωeγ t/2
[
C1J0(ξ) +C2N0(ξ) +

√
3C3 J0(

√
3ξ) +

√
3C4N0(

√
3ξ)

]
(4.3)

q̇2 = ωeγ t/2
[
C1J0(ξ) +C2N0(ξ)−

√
3C3 J0(

√
3ξ)−

√
3C4N0(

√
3ξ)

]
. (4.4)

Using equations (2.12) and (2.13) for bothqi(t) andqi(t ′) we can express constantsCj as

C1 = N1(ξ)

21(ξ, ξ ′)

{
(q ′1 + q ′2) e−γ t

′/2 − N1(ξ
′)

N1(ξ)
(q1 + q2) e−γ t/2

}
(4.5)

C2 = J1(ξ
′)

21(ξ, ξ ′)

{
(q1 + q2) e−γ t/2 − J1(ξ)

J1(ξ ′)
(q ′1 + q ′2) e−γ t

′/2
}
. (4.6)

We do not write the constantsC3 andC4 because they have the same form asC1 andC2,
respectively, but with the substitutionsξ →√3ξ andξ ′ → √3ξ ′.

Using equations (4.2)–(4.6), we finally obtain the classical action in the form

S(cl) = 1
4ω
{
A(ξ, ξ ′)

[
(q1 + q2)

2 − (q ′1 + q ′2)
2
]

+ Ã(ξ, ξ ′)
[
(q1− q2)

2 − (q ′1− q ′2)2
]

+(q1 + q2)(q
′
1 + q ′2)

[
D(ξ, ξ ′) e

1
2γ (t−t ′) +G(ξ, ξ ′) e

1
2γ (t

′−t)]
+(q1− q2)(q

′
1− q ′2)

[
D̃(ξ, ξ ′) e

1
2γ (t−t ′) + G̃(ξ, ξ ′) e

1
2γ (t

′−t)]} (4.7)
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where we have introduced the functions

D(ξ, ξ ′) = 1

1(ξ, ξ ′)
[
J0(ξ)N1(ξ)−J1(ξ)N0(ξ)

]
(4.8)

G(ξ, ξ ′) = 1

1(ξ, ξ ′)
[
J0(ξ

′)N1(ξ
′)−J1(ξ

′)N0(ξ
′)
]

(4.9)

A(ξ, ξ ′) = 1

1(ξ, ξ ′)
[
J1(ξ

′)N0(ξ)−J0(ξ)N1(ξ
′)
]

(4.10)

D̃(ξ, ξ ′) =
√

3D(
√

3ξ,
√

3ξ ′)

G̃(ξ, ξ ′) =
√

3G(
√

3ξ,
√

3ξ ′)

Ã(ξ, ξ ′) =
√

3A(
√

3ξ,
√

3ξ ′)

(4.11)

and

1(ξ, ξ ′) = J1(ξ
′)N1(ξ)− J1(ξ)N1(ξ

′). (4.12)

In the process of evaluating equations (4.5) and (4.6) we have used the well known recurrent
formulae for functions of Bessel type [12].

Now we may return to equation (3.15) and calculate the multiplicative functionF(t, t ′),
taking into account definition (2.9). The result is

F(t, t ′) = ω

4πh̄

{
D(ξ, ξ ′) G̃(ξ, ξ ′) + D̃(ξ, ξ ′)G(ξ, ξ ′)

+D(ξ, ξ ′)D̃(ξ, ξ ′) eγ (t−t
′) +G(ξ, ξ ′) G̃(ξ, ξ ′) eγ (t

′−t)}. (4.13)

Thus finally, the exact propagator for the system of two coupled oscillators with exponentially
decaying mass is given by equation (3.9), where the multiplicative functionF(t, t ′) is defined
by equation (4.13) and the classical action is given by (4.7). The propagator obtained gives
all information about our system. Further, we can derive the energy expectation values, exact
wavefunctions (starting from equation (3.2)) and the uncertainty relations, etc.
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